Evaporation

- ✓ All liquids have a tendency to lose molecules through evaporation.
- ✓ A molecule escapes into the vapor when it has enough kinetic energy to overcome the attractive forces between molecules within the liquid.
- \checkmark At higher temperatures a larger portion of the population has the necessary kinetic energy to escape the liquid, $K_{\rm esc}$.

Enthalpy of Vaporization, Volatility, and Boiling Points

Volatile substances (L., *volare* = to fly) have low values of ΔH_{vap} and require less heat to escape their liquid phases, implying a lower K_{esc}

Substance	Formula	$\Delta H^{ m o}_{ m vap} \ m (kJ/mol)$	b.p. (°C)
water	H ₂ O	40.7	100.0
ethanol	C ₂ H ₅ OH	38.6	78.5
carbon tetrachloride	CCl ₄	30.0	76.7
diethyl ether	$(C_2H_5)_2O$	26.0	34.6

Evaporation-Condensation in a Closed Container

Development of Liquid-Vapor Equilibrium

- The partial pressure of the vapor in equilibrium with the liquid is the **vapor pressure**.
- The vapor pressure depends upon the following:
 - 1. The nature of the liquid (ΔH_{vap})
 - 2. The kinetic energy of the molecules ($\propto T$)
 - 3. The vapor concentration ($\propto T$)
- All vapor pressures increase with increasing temperature.

Vapor Pressure vs. Temperature for Typical Liquids

Critical Point

- ✓ More applied pressure is required to condense a vapor at higher temperature.
- ✓ Higher temperature means more rapid molecular motion, which makes it more difficult to establish the attractive forces needed for condensation.
- The limit on the ability to condense a vapor with applied pressure at high temperature defines the **critical point**.
 - \implies The **critical temperature**, T_c , is the point above which a gas cannot be liquified, regardless of the pressure.
 - \blacksquare The **critical pressure**, P_c , is the minimum pressure needed to cause condensation at the critical temperature.
- ✓ Water's critical point is the $T_c = 374$ °C and $P_c = 217.7$ atm.

Supercritical Fluids

- Above the critical point the substance exists as a supercritical fluid.
- ✓ Supercritical fluids have high kinetic energy molecules forced together by high pressures.
 - Densities are similar to liquid densities.
 - Can have useful properties as solvents.
- Supercritical CO₂ is produced above $T_c = 30.99$ °C and $P_c = 72.8$ atm.
 - Good solvent for oils, but not polar substances.
 - Used for decaffeinating coffee and a new dry cleaning method.

Surface Tension of Liquids

✓ The absence of intermolecular attractions above the surface of liquid creates a barrier or "skin".

- ✓ Surface tension allows light objects with greater density than water to "float" on the surface (e.g., powdered sulfur, water bugs).
- ✓ Surface tension causes water to "bead" on a polished metal surface.

